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I. Phys: Condens. Matter 4 (1992) 770CL7744. Printed in h e  UK 

A theory for the /?-relaxation process near the liquid-to-glass 
crossover 

M Fuchs, W Gotzet, S Hildebrand and A Lam 
Physik Departmenl, Tkchnische Universit51 Miinchen, D-8046 Garchina Federal 
Republic of Germany 

Received 6 April 1992, in final form 12 June 1992 

AbslracL lime mode mupling lheory for supercooled liquid dynamics finds a p-relaxation 
regime on mesoscopic timeseales. It is caused by lhe interplay between nonlinear 
interadions of density Auclualions and phonon-assisted hopping transporl. In this regime 
all mrrelation Cundions and specua can be mprcssed in terms of a single parrelator 
G, which is a homogeneous function of lime and two relevant mnlrol parameters. It is 
specified by a single number, namely Ihe mpnent parameter A. Eight regions can be 
identified, where the equation for G can be solved by series expansions. The various 
pmsibilities are discussed in mmparison with represenlalive numerical solutions For 
temperatures T sufficiently above the critical valne T, hopping effects can be neglected 
and a stretched susceplibilily minimum is found as a crossover h m  von Sehweidler 
decay to critical decay. For T near T, hopping effecu balance the cage effect and lhis 
mu l l s  on logarithmic scales in a rather abmpt crossover from the high-frequency u-peak 
tail to lhe a i l i d  spectrum. For T telow T, there appears a frequency window between 
WO knees in lhe susceptibility spedrum, where hopping effecLs suppress the enhanced 
fractal spectra. There occurs a emssover from Debye relaxation to while noise. The 
mulling snsceplibility minimum in lhe stmngly s u p e m l e d  state exhibits a subtle power 
law dependence on the separation parameter T - T.. ?he measurable features in the 
susceptihilily, such as psilion and strength of the minimum, are evaluated and shown to 
characterize transparenlly the liquid-to-glass crossover as caused by the underlying g lau  
transition singularity 

1. Introduction 

The most prominent features of glassy relaxation in cooled liquids are the low-lyfflg 
susceptibility bumps, called 01 peaks. The timescale T* of the a process increases 
dramatically upon cooling. For a temperature T near the melting point T? is 
somewhat larger than the time t ,  specifying the dynamics of microscopic excitations 
such as phonons. If T approaches the calorimetric glass transition value Tg, the 
scale T* is of macroscopic size. There are also subtle dynamical phenomena, referred 
to as p processes. They are observed within the mesoscopic window for the time 1, 
T* >> t >> t,; they can be measured as spectra for the frequency w within the window 
T;' (( w << t i '  [l]. Goldstein argued convincingly [2] that an understanding of the 
p process is the key for a microscopic explanation of the liquid-to-glass crossover in 

t Also at Max Planck Inslitut fiir Physik (Werner Heisenberg Institut), PO Baw 401212, D-8000 Miinchen, 
Federal Republic of Germany. 
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simple systems. In recent years the mode coupling theory (MCT) for the dynamics of 
cooled liquids has been discussed, which obtains a and p processes resembling the 
experimental results for fragile glass formers. For an overview the reader may consult 
[3] and a review of the mathematical details can be found in [4]. In this paper the 
previous work shall be extended to a complete discussion of the MCT results for the 
p process. 

The MCT derives from closed equations of motion conventionally defined 
autocorrelation functions a X ( t )  for dynamical variables X [SI. The variables X 
of interest are the density fluctuations p, of wavevector q, the dipole moment D, the 
stress T ,  a coupling variable to photons CkP Cq,xppkpp consisting of superpositions 
of density fluctuation pairs, and so on. In these examples @,(t) can respectively 
be measured by neutron scattering, by dielectric loss spectroscopy, by acoustic 
spectroscopy or conventional Brillouin scattering experiments, and by depolarized 
light-scattering or second-order Raman scattering. The MCT equations are regular; 
the mathematical control-parameter, a vector V in some highdimensional parameter 
space IC, depends smoothly on the physical control parameters such as temperature 
7’ or density n. However, the equations bring out a spontaneous singularity V,, 
called the glass transition singularity, by means of a Whitney fold bifurcation [4]. 
This bifurcation implies slow and stretched relaxation processes. There appears 
a small parameter, namely the distance from the singularity, permitting analytic 
asymptotic solutions of the complicated equations of motion. These asymptotic 
solutions comprise the essential qualitative features of the MCT. It was proposed 
to test whether they also reflect the qualitative features of the experiments. Only if 
this were the case would one shoulder the burden and solve the MCT equations in 
quantitative detail. 

One is the 
factorization property: 

For p relaxation the MCT predicts some universality features. 

@x(i)-f”x =h,yG(t). (l.la) 

Here f2 > 0 is the Edwards-Anderson parameter, or non-ergodicity parameter, at 
the singularity and hx 2 0 is called the critical amplitude. These time-independent 
quantities are determined by the equilibrium structure of the system and they 
contain all microscopic specifications of X. The time and the sensitive temperature 
dependence enter via the p-correlator G, which is the Same for all variables X of 
a given system. Let us mention in passing that the p-relaxation regime is defined 
implicitly by requiring Ih,G(t)/fS,I < 1. Within the p region, the correlator ax  is 
close to arrest near Fr. For a precise definition see equation (2.5) bclow. Spectra are 
denoted as usual by @$(w) ,  G”(w)  and they are defined as Fourier cosine transforms 
of the corresponding correlator. The susceptibilities ~ ( w )  = ~ ‘ ( w )  + ix”(w) are 
related to the Laplace transform of the correlator @( z )  = LT[@( t ) ] (  z ) ,  z = w + io, 
by xx(w) = z a X ( w )  + &. Here x% is the thermodynamic susceptibility and the 
following convention is used: LT[@(t )]  = iJdtO(t)exp(izl)@(t) [SI. One gets as 
an equivalent to (Lla) the factorization 

x”(w) = hxx”(w) x’(w) - x‘x = h,x’(w).  (1.lb) 

Now ~ “ ( w )  = wG”(w) denotes the @-susceptibility spectrum. Similarly, the relations 
~ ‘ ( w )  = wG‘(w)  and xk = x$ - f; hold. Thus up to constants h, all spectra 
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are the same function ~ " ( w ) .  This is valid not only for the dependence on frequency 
but also for the singular dependence of the spectra on control parameters such as 7'. 

The second universality feature concerns the p correlator itself, which is k e d  by 
the four numbers to, A, U and 6. The timescale tu connects mathematical time with 
physical time. The exponent parameter A, obeying 1/2 < X < 1, specifies the details 
of the dynamics near V,. It fixes three characteristic exponents describing fractal 
decay patterns. The critical exponent a, obeying 0 < a < 0.395.. ., follows from 

and the vOn Schweidler exponent b, obeying 0 < b < 1, is obtained from 

These exponents decrease monotonically to zero if X increases towards unity. For 
X = n/4 one finds, for example, a = 0.287. . ., b = 0.500. It will be shown that for 
X > 7r/4 a further exponent c is relevant. It obeys 0 < c < 0.5, decreases to zero if 
X tends to unity, and follows from 

Throughout this paper r denotes the gamma function. The quantities ( U ,  6) are the 
relevant control parameters. The glass transition singularity is specified by U = 0, 
6 = 0. Both parameters depend smoothly on physical control parameters such as T. 
The zero of U defines critical control parameters such as T,. For example, one can 
write 

T, - T 
U = c- 

Tc 
where C > 0 for T near 7,. The parameter U is called the separation parameter. 
It is given by the equilibrium structure of the system, as is A. These two parameters 
specify the cage effect of liquid dynamics. They are the same, for instance, for a hard- 
sphere system obeying Newtonian dynamics and one following Brownian dynamics. 
It is the potential landscape in phase space that governs the cage statistics and self- 
blocking events. Details of the microscopic motion enter merely via the scale to, 
specifying the speed with which the particles explore the landscape. Within the so- 
called simple version of the MCr, dealing with the cage effect only, a transition from 
ergodic motion for U < 0 to non-ergodic dynamics for U > 0 is found. The ideal 
glass is characterized by ax(t + co) = fx > 0, i.e. by an extensive number of 
degenerate metastable states [6]. Since there are no long-range correlations within a 
glass, the activation barriers between the metastable states are finite. The parameter 
6 > 0 describes the rate for phonon-assisted hopping events from one state to the 
other. These hopping events restore ergodicity for all U .  The hopping parameter 
depends on the microscopic details of the dynamics and will be quite different for 
a hard sphere system in a vacuum on the one hand, and a hard spherical colloidal 
suspension on the other hand. One gets 

= g A ( t l t u , ~ , 6 t u ) .  (1.4) 
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We will not indicate explicitly in the following that the function of three variables gA 
is determined by A. 

Within the M m  it is important to treat wavevector dependencies properly in the 
equations of motion. This b particularly essential if one wants to understand the T 
dependence of the hopping rate 6 171. It is a non-trivial result that within the 
regime all these detailed complications can be condensed to the two numbers U ,  6. 
The formulated results (1.1) and (1.4) hold only in leading order for ( U ,  6) -+ (O,O), 
see equation (2.5). There are corrections to the asymptotic results and these are 
not universal. The range of validiv of (1.1) and (1.4) may be different for different 
X and the deviations cannot be specified by U and 6 alone. In leading order the 
quantities h,, C, 1,  and 6 have to be replaced by their values for T = T, so that 
the T dependence only enters via U .  For practical applications, however, the ~a 
results have been used for IT - T,\ as large as 100 degrees. In those cases one has 
to allow a smooth T dependence of h,, 1, and 6. 

So far the quantitative effect of hopping on the correlator G has been discussed 
only within a schematic model [SI. Adjusting constants so that the 01 spectrum agreed 
within an order of magnitude with the dielectric loss mwes far the standard glass 
former CaKNO, (CKN) it was found that 6t ,  - and 62, decreased by between 
one to two orders of magnitude upon lowering T through T,. The relevance of these 
findings for the &relaxation theory is not obvious at present, but in the following we 
will consider them as educated guesses for the size of the hopping effects. 

Previous comparisons of experiments with M a  results have been restricted to the 
simple version, where the hopping effects are ignored. In this case the p correlator 
obeys a one-parameter scaling law: 

G(1) = c,g* (tit,) U 2 0 6 = 0. (1.5) 

The correlation scale c, vanishes and the timescale 2, diverges at the critical point, 
cu = lo/'/', t u  = iu~u~-'~'''. The master functions gf, given by A, can be evaluated 
easily [9]. For short rescaled times 1̂  = f/t,, one finds critical decay 

1 
fa 

g*(i << 1) = 7. (1.6) 

For larger rescaled times the glass correlator arrests: 

(1.7~) 

Thk means that the correlator gcts a contribution from the EXwardsAnderson 
parameter, which shows a cusp singularity at the critical point: 

~~~ ~ ~~~ 

6 = 0. (1.76) t 
u > o  --1m 

1, 
G(i )  - Xm = 

On the liquid side of the transition, the mrrelator obeys the vOn Schweidler law: 

g-(1^> 1) = -B-t?'. (1.8) 

Herc B- > 0 is of order unity 191. Notice that the fractaf decay laws (1.6) and (1.8) 
appear, even though no fractal structures in configuration space are built into the M a  



&relaxation process near the @uid-lo-glnss crossover 1113 

equations of motion. The power laws result from the interplay of retardation effects 
and nonlinearities. Let us notice for later reference that a power law correlator 

G(t)  = ( r / t )"  (1.9'7) 

implies for the susceptibility similar power laws: 

The role of the hopping effect in its interplay with the cage effect is exhibited most 
clearly for vanishing separation parameter. In this case one finds a one-parameter 
scaling law quite similar to (1.5) [lo]: 

G(2) = c a g ( t / i a )  o = 0. (1.10) 

The master function g is independent of 6 and given by A. The scales are again 
determined by the exponent a: cg = (6tu)nl('+za), t6 = t,(6tu)--1/(1+za). As above, 
critical decay is obtained for short rescaled times g ( f <  1) = l / t " .  For large times, 
however, there are two possibilities, depending on the sign of 

7r 
AA = X - A" A, = 4. (1.11) 

For exponent parameters smaller than the critical value A,, one again finds the von 
Schweidler law (1.8) 

g ( f>  1) = - B f b  b > 6. (1.1%) 

g ( f >  1) = -(AA)-'/'f'/* b < $. (1.12b) 

However for AA > 0 a von Schweidler law with universal exponent 1/2 is obtained: 

One motivation of this paper is to investigate the susceptibility spectra implied by the 
master function g and to understand the relaxation for AA = 0. 

Neutron scattering experiments done for CKN [ll], orthoterphenyl 1121, 
polybutadien [13] and propylene carbonate [I41 provided some support of the M c r ,  as 
can also be inferred from the work quoted in the mentioned papers. The validity of 
the scaling laws (lS), the validity of the master function g- and the scale variations 
with U have been successfully tested against experiments for polymer dielectric loss 
spectra [U, 161, for neutron scattering cross sections of a biopolymer [17], for photon 
correlation curves for a colloidal suspension [lS, 191 and for correlators obtained by 
molecular dynamics work for a model liquid [20,21]. All those mentioned papers deal 
with the weak coupling side U < 0 of the transition. Extensive tests of (1.5)-(12) 
have been carried out recently for U > 0 and U < 0 with depolarized light-scattering 
spectra, done within a four-decade frequency window for CKN, by Cummins, Li and 
mllaborators [22,23]. The theory accounted for the data within the large temperature 
interval 2 3 O  C 4 T < 195O C. The critical point was identified as T, = (10515)O C in 
accord with results obtained from neutron scattering spectroscopy [24]. Even though 
the applicability of the Mm is still highly controversial [q, the above-mentioned 
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quantitative confirmations of that theory appear as a sufficient justification to continue 
with this approach. 

For T - T, as large as 9oo C the CKN light-scattering data [22,23] demonstrate 
a merging of b e  a-5 relaxation spectra with the micr&copic-excitation band, as 
expected from MCT model calculations [SI. For such large (T - T,) the asymptotic 
formulae, based on the U -+ 0 limit, can no longer be used for a quantitative data 
analysis. However, the light-scattering spectra for CKN [22,23] also show systematic 
deviations from the p-relaxation results of the simple M a  version (1.5) for T near 
T,. These deviations are suspected to be caused by hopping effects, described by 
6 # 0. This ObSeNatiOn provides the main motivation of the present paper, where 
the complete p correlator (1.4), in particular the properties caused by 6 # 0, shall be 
discussed in all details. It is hoped that the results of the following calculations can 
Serve as the basis of future quantitative tests for the MCT predictions on the interplay 
between ergodicity-breaking cage effects and ergodicity-restoring hopping events. 

2. Basic formulae 

The following analysis is based on the equation derived by Gotze and Sjogren [lo] 
for the p correlator: 

( 2 4  
i6 - U + - + XzC‘T[G( f ) * ] (z )  + ( ~ L c l [ G ( t ) ] ( z ) ) ~  = 0. 

The derivation of (2.1) is based on a leading asymptotic solution of the  MCT equations 
of motion near a glass aansition singularity, as specified below in (2.5). The MCT 
equations in turn are obtained within the generalized kinetic equation approach 
towards liquid dynamics, combined with Kawasaki’s factorization approximations; 
compare [4] for details. 

It is more convenient to rewrite this scaling equation in a form that avoids Laplace 
transforms [9]: 

z .  

t 

o-d t+XG( t ) *  = ~ -  G(t-t’)G(t’)dt’. (2.2) :t Ju 
It has to be complemented by the initial condition 

lim - G(t)  - - 1 
1-0 G,(t) G,(t) = ($)”. 

The critical decay G, is the dynamical signature of the underlying fold singularity. 
At the transition (u ,6)  = (0,O) it describes the long-time behaviour of the full MCT 
equations. 

For a numerical determination of G, equation (2.2) was discretized as done 
previously for 6 = 0 [9]. TJ get results for dynamical ranges as large as 15 decades, 
the step size for the time grid was allowed to expand with increasing t. Roughly, 
equally spaced time p i n t s  were chosen on a logarithmic scale. A similar g i d  was 
applied to evaluate the Fourier transforms with a Filon procedure. 

The correlator G obeys a two-parameter scaling law [lo]. A scaling line in the 
odt,  parameter half-plane, 6 2 0, shall be defined by 

U = BRZ‘L 6 t  U -  - 8R‘+ZQ. (2h) 
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-0.10 -0.05 0.00 0.05 0.10 0.15 
D 

Figure L The mntml parameter halt-plane With scaling lines (2.4a) for the exponent 
parameter X = 0.91. The hull scaling lines through the points 3 and 6 are lhe ones with 
U = FUO, equation (3.2). The poinls 1-9 where the path C intersecu he scaling lines 
have the following cwrdinaies ( o l 0 * , 6 t ~ l O ~ )  = (-14, IO), (-4.2, 1.53), (-1.9, LO), 
(-0.47,0.70), (0.44,0.57), (1.5,0.44),(2.7,0.33), (4.6,0.21), (7.0,0.09);see text. 

Here the dimensionlcss frequency R is the line parameter. For R i 0 the line 
approaches the glass transition singularity. If the time is rescaled as 

it" t = -  
R 

the correlator (1.4) merely changes its scale: 

g ( l / t u , u , 6 t u )  = cog ( f ,B,8) c, = Re. (2.44 

The correlator is a generalized homogeneous function of the three variables t / t o ,  U ,  

6. Moving the parameter pair (U, 6) along a scaling line (2.4a), G merely changes in 
a selfsimilar manner. It is sufficient to evaluate the correlator G( f )  = g( f, B, 6) for 
the point ( B ,  A), in order to know G for all points ( U ,  6) on the scaling line through 
( B , 6 ) .  Similarly one gets for the susceptibility 

2 
2 = R- (244 x(z) = C&i) 

t U  

where 2 is the susceptibility corresponding to &(f) evaluated for (a,$). Thus, in a 
double-logarithmic presentation of the susceptibility spectra, the graphs log fl against 
log w referring to different points on the scaling line have the same shape. They are 
created from the spectrum for (e,$) by a shift logR parallel to the logw axis and by 
a shift logc, parallel to the logx" axis. Figure 1 exhibits the parameter half-plane 
with some representative scaling lines. For the simplified MCT, dealing with 6 = 0, 
only two scaling l ies  are involved. The half-axis .T < 0 deals with the liquid states 
and one can choose B = -1. The half-axis U > 0 corresponds to the ideal glass 
states and one can take B = tl. With (1.5) one gets g*(i) = g(f,i=l,O). Our 
numerical solution of (2.2) has been done with B = kl, also. The result for U -, 0 
was obtained in the limit 6 + M. 
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The scaling law allows for a precise mathematical definition of the p-relaxation 
regime. Consider a path R + V(f2) in control parameter space IC. The 
theory of the bifurcation singularity maps that path onto one in the udtu plane: 
n -+ (u(a),a(s2)). Assume the latter to be a scaling line so that h particular 
V(f2 - 0) -+ V,. The correlators will vary in a complicated manner with R,  as 
defined by the solution of the full MCT equations of motion: ex( t )  = @:((t). But 
in the limit of small fl one finds 

If V moves towards V, on a line V(n), the RHS of (1.10) vanishes in proportion to 
cn, P rovided the time increases towards infinity as given by (2.4b). The corrections 
to (Ma), Q X ( t )  - ffc - hxG( t ) ,  vanish in proportion to c;. Let us emphasize the 
following: within the MCT neither an ansatz nor a scaling assumption is introduced 
in order to obtain the results (l.I), (1.4), (2.1) and (2.5). These formulae are 
mathematical implications of the existence of a bifurcation singularity of the Whitney 
fold type. They reflect the centre manifold theorem of singularity theory. The 
existence of a bifurcation singularity for the infinite set of equations of motion of the 
MCT, derived for density and current density fluctuations for simple classical liquids, 
has been proven previously; compare [4] and the original references quoted therein. 

A full test of the MCT would require us to map out experimentally the hvo- 
dimensional half-plane of relevant control parameters (u,6iu), shown in figure 1. In 
particular one should move on scaling lines in order to test the homogeneity (2.4) 
and approach the singularity very closely in order to eliminate the corrections to the 
leading-order results (1.1) and (1.4). The problem k familiar from ordinary phase 
transition theories in finite systems. The present 6 is the analogue of the inverse 
box diameter 1/L.  For ordinary phase transitions one can vary U and 1 / L  and 
extrapolate, e.g., to 1/L - 0. The MCT of the liquid-to-glass crossover is more 
complicated to understand, because 6 cannot be manipulated and extrapolation to 
6 -+ 0 can be considered as a theoretical idealization only. The MCT equations 
determine V in terms of the physical control parameters, say T. Thus the system 
moves on a path C: T - (a(T) ,6(T) )  as sketched in figure 1 by a curve through 
the points 1 to 9. This path is fiied by the microscopic details of the given system 
and cannot be varied. In particular, C avoids the singularity [lo]. All functions wry 
smoothly with T. There is no sharp transition for T = T,. But passing from T > T, 
to T < T,, the dynamics alters drastically. This is exemplified in figure 2, showing 
the evolution of the susceptibility spectra along C from figure 1. For example, for 
state 2 the spectrum exhibits a broad minimum connected with a crossover from some 
fractal decrease to some fractal increase with increasing frequency. But state 6 has a 
much sharper minimum and on both sides of the latter there are knees in the logx" 
against logw curves. The h e e s  and the minima scale differently with changes of U .  

3. The various relaxation regimes 

3.1. The p-relaralion scales 

In this section eight regions will be identified in the three-dimensional manifold 
of variables ( t / tu ,u ,6tu) ,  where G(1) can be evaluated analytically as a power 
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&"re 2 Susceptibility spectra lor X = 0.91 and the parameter points 1-9 specified in 
figure I. 

series. Within these regions the p correlator can be understood qualitatively as the 
leading contribution to the respective series. A complete qualitative understanding 
of the solution of (2.2) is achieved by interpolation between the series referring to 
neighbouring regions. The various regimes are separated by surfaces, which can be 
described by 1 = t , (u,6to).  There appear five such functions 1,; they are the 
relevant timescales for the p dynamics. Because of (24) they are homogeneous 
functions of the control parameters: 

tx(u,6t , )  = R-'t,(u.n-",6toR-('+'")). (3.1) 

It is sufficient to know the scale i,, = t , (B, i )  for one pair (e,$) in order to 
h o w  it on the complete scaling line through that pair. Due to the scaling law it 
is sufficient to consider a representative cut through the (tit,, U, 6t,) manifold; the 
surfaces t = t=(u, 61,) yield curves on this cut. Figure 3 exhibits the cut btu = 1 for 
a representative critical exponent a = 0.200. 

Let us consider (3.1) with R = 1 ~ 1 ' ~ ~ ~ .  One gets for u<>O 

1, = t&l, ( l o l / U o ) - ( ' + ~ ~ ) ~ ~ ~ ) ~ u ~ - ~ ~ ~ ~  

mu = (6tu)2Q/(i+'a). ( 3 4  

where 

If tx(*l,z) depends smoothly on z for small I, one gets 1, a i,(~l,O)lul-l/za 
for Iou/ul < 1. Thus one identifies the scales 

CO = lol1/' to  = t,lal-'/Z" (3.3) 

as relevant for a sufficiently large separation parameter. This is the only scale that 
enters the simple version of the MCT, leading to (1.5). 
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Flgum 3. Various dynamical regions A - , A , A + ,  B - , B , B + , C  and M separaled by 
lhe timestales t , ,  t b ,  i, tg  and 1, lor X = 0.91 as defined in h e  L e x ~  

Let us apply (3.1) with R = (6tU)1/(1t2a) leading to 

1, = t , ( U / U , , l ) ( s t U ) - 1 / ( 1 + 2 Q ) .  

If again t,(z,1) depends smoothly on z for I + 0, one gets 1, e 
t,(O, 1)(610)-1/(1t2a) for 1 0 1  < U,,. Thus one identifies the scales entering (1.10) 

c6 = (6t,) ' /( '+' ')  t6 = t , (6t , ) -1/(1+ze) 0.4) 

as relevant for small separation parameter. The hopping rate introduces bo as the 
natural scale for the separation parameter [lo]. 

Below it will be shown in detail that the relaxation patterns are pairwise quite 
different for the three cases: the liquid region U < -U,, the transition region 
1 0 1  < U, and the glass region U > The spectra in figure 2, where 1 and 2 refer 
to the liquid, 4 and 5 to the transition region, and 8 and 9 to the glass, exemplilj this 
statement. For the characteristic separation &U,, hopping effects and cage effects are 
of equal importance for the p dynamics if t %z I ,  FJ t 6 .  

A natural scale i appears, if one compares the cage effect term and the hopping 
term as they enter the scaling equation (2.1) or (22 )  [IO]: 

f = I0l/6 = W1161/6̂ . - (3.5) 

From f and 1, one gets a further scale as the geometric mean 

t g  = = t , / ( 6 f , l 0 l ( ' - ~ " ) / ~ '  ) .  'I2 (3.6) 

This scale will be relevant for the glass only. Finally there will enter a scale t,, 
speciljing a crossover in the liquid state 

(3.7) 
26/(1-28) t ,  = i (f/t,) 
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The scale 1, is only relevant if b < 1/2  is fulfilled; it is shown as the chain curye 
in figure 3. The value b = 1/2  plays a distinguished role for the hopping-controlled 
relaxation for very long times. 

The various @-relaxation results are demonstrated in figures 4-9. Wr the three 
regions U K -uo, [ U ]  U" and U B U" ONO representative exponent parameters 
are considered: X = 0.74 < A, is connected with exponents a = 0.31, b = 0.58 and 
X = 0.91 > X, leads to a = 0.20, b = 0.28 and c = 0.17. The full c w e s  exhibit 
the numerical solution of (2.2). The various series expansions are shown as broken 
curves; they carry labels such as A, B-, and so on, referring to the respective series 
such as (3.13) and (3.15), where the coefficients are denoted by A, ,  B; etc. A similar 
labeling is done in figure 3 to indicate the relevant regions, where the series can be 
used. The recursion relations for the series coelfcients are derived in appendix A 
and referred to by equation numbers like (A6) or (As). 

Let us reemphasize that the correlator G(1) or the spectrum G"(w) change 
smoothly with U and 6. The solutions of ( 2 2 )  do not exhibit singularities of any 
kind, since the glass transition singularity is avoided, which means 6(T = T,) > 0. 
Therefore concepts such as liquid, transition region and glass, or the relaxation 
regimes A, E- ,  and so on, are fuzzy. The definition of the scales is to some 
extent arbitraly; all of them can be altered by factors of order unity. The following 
series expansions usually work only in the limit where the uiple ( t / t o , u , 5 )  departs 
arbitrarily far from the borders of the corresponding region. Expansions near the 
intersection of scales do not have a well defined mathematical meaning; therefore 
the definition of the scales themselves has no relevance near these intersection points 
either. Figure 3 is presented as a help only to organize the following discussion. 

3.2. Short-lime dynamics 

3.2.1. Reiaxafion wifhin ihe liquid regime. If one can ignore the hopping effect within 
the liquid region the critical decay law can be extended to larger times by the series 

Here, and in the following, 1 sums extend over 1 = 1 , 2 , .  . .. 
A;  = ( -1 ) 'Af  are determined by the recursion relation (AS), where 

The coefficients 

(3.9) 

The A: are given by A; (3.8) is the short-time expansion of g- in (1.5). The series 
(3.8) converges for t / t ,  < r; T depends strongly on A. From 1 < 170 we estimate 
r = lim,-m [All-*/*a,, to be 85  for X = 0.74 and 0.9 for X = 0.91; r tends to zero 
for X --f 1. 

The deviations of G(i )  from the critical correlator (2.3) depend sensitively on 
U.  They describe the suppression of G(t)  below G,(t)  so that there appears an 
inflection point ti in the G(1) against logt graph. Near t i ,  G(1) becomes negative, 
as shown in figures 4(a)  and 5(a). Similarly, upon decreasing w the susceptibility 
spectrum gets a usensitive upward bending, as shown in figures 4(b) and S(b). In 
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FIgure 4 Comelator G as function of lime t (a) and loss spectrum x" as funaion of 
frequenq' w @) for X = 0.74 for a liquid slate wilh separation prameter W / W Q  = -7.2. 
The broken curves arc the various y m p l o t i c  expansions described in the text. The chain 
CUNe is the interpolation (3.17). 

principle, a measurement of these deviations from the critical dynamics yields U ,  

whose extrapolation to zero would determine T, from the high-temperature side via 
equation (1.3). 

The bending of the ~ " ( w )  against w curve leads to a minimum of the susceptibility 
spectrum at some frequency wmh, where x"(wmi,) = xmin. Because of (3.8) these 
quantities scale with the separation parameter sensitively like 

(3.10) 

Here and in the following yI, -y2 denote numbers, which are independent of (u ,6 )  
and are determined by A. In figure 2 this scaling is the reason for the udependent 
shift of the minimum in curve 2 relative to one in curve 1. Exuerimental verification 

L x,i. = 7 2  Co. w . -  L nun - 71 It, 

of the scaling (3.10) gives a way to fuc T, from the liquid side, as can be inferred 
from [lS, 16,19,21-231. 
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L I "  
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Figure 6. Correlator G(1) and Im spectrum ~ " ( w )  [or X = 0.74 for a glass slate with 
v/oo = f7.2. Ihe troken curves are the various series apansions described in the 
t a l  and lhe chain curve is the interpolation [omula (3.30). 

3.2.2 Relaxation within h e  gluss repime. In the glass region, where again I U I  is large 
in comparison to a,, but now positive, one continues the critical decay as 

G(t )  = c,,(t/tm)-a(l + Af(i/f , ,)zf") U >> U,,. (3.11) 

This expression agrees with (3.8) except for changes of signs in the coefficients Af 
with odd values of 1. The radius of convergence is the same as for the liquid. 
Equation (3.11) is the short-time expansion of g+ in (1.5). 

The a-sensitive deviations Bom the critical decay imply an upward bending of the 
G(t )  against log t curve until the plateau value x, from (1.76) is reached, as shown 
in figures qa) and 7(Q). Detection of the plateau value is a means to measure U and 
obtain T, by extrapolation from the low-temperature side, as can be inferred from 
[12,13,24]. The a-sensitive corrections to the critical spectrum suppress the log x'' 
against logw curve below the latter one. Thus a knee is formed at some frequency 
wK where x"(wK) = xK. These spectral features scale with the separation parameter 

wK = $ f t w  XK = 7 2  K ca. (3.12) 

Upon moving into the glass state by increasing the positive CT, the cage effect becomes 
more efficient. This leads to a stiffening of the dynamics upon cooling, reflected by 
an increase of wK and xK. Measuring wK or xg, for example by shifting the log x'' 
against logw curves on top of a master curve, yields t,, or c,,. Both quantities 
determine U and allow one to identify the critical point T, by extrapolation to U = 0, 
equation (1.3), as was demonstrated in [22,23]. 

The described stiffening of the cage-effect dominated dynamics is demonstrated 
by the spectra 7-9 in figure 2 The difference between the concave logx" against 
logw curve in the liquid and the convex curve in the glass within the described high- 
frequency window is a rather drastic one. It allows one to discriminate the U < -U" 

from the a > U,, states at one glance on raw data of the spectra. Thereby one gets 
a first estimation of T, within an accuracy of rt20K, as can be seen from the CKN 
examples in [U]. 

I 

as 
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Figure 7. The same as figure 6 [or X = 0.91 and u / q  = f7.2 

3.23. Rehation within the transilion regime. For the transition region, where U is 
small compared to U", one can find the solution 

(3.13) 

Here 

, ~~ ,.., ~~ (3.14) 

and the other coefficients are given by (A7). The positive parameter E = [ (u ,6 )  
varies smoothly with control parameters, it is constant on a scaling line: [(.,a) = 
[(&, 8). The solution describes the dynamics for f 6 1 < t 6 ,  as shown in figures q a )  
and 9(a). For shorter times and U # 0 the expansions (3.8) or (3.11) apply. For 
U = 0 the solution (3.13) has to extend the critical decay (23), ie. €(U = 0,6) = 1. 
In this case (3.13) provides the short-time expansion of g in (1.10). Therefore [ 
remains of order unity also for 0 < lul << uu. The solution (3.13) continues (3.8) 
or (3.11) with very good matching for t = 1, as exemplified in figures 8 and 9. For 
= 1 the radius of convergence is again found to be strongly X dependent: T = 1.9 

for X = 0.74 and T = 0.59 for X = 0.91, estimated for I = 100. 
The correlator (3.13) differs from glass behaviour by not showing a plateau, and 

from liquid dynamics by exhibiting the inflection point t i  of the G(t) against logf 
graph not near the zero of the correlator but rather at G(t i )  FJ x m ( u  = U"), 

compare figures S(Q.) and 9(a). The susceptibility spectrum follows the critical law 
(2.3) with decreasing hequency much closer than described above for lul B ou. This 
mmes about because the correction to the u-indepcndent leading term, which is 
proportional to (wf")", varies like (wl,)-= for \U\ B U" but l i e  (wt6)-'-" for 
101 < uu. The latter term decreases much faster than the former with increasing 
frequency. The result (3.13) extends the spectrum just to the minimum position 
wmin. If one would fit the spectrum for w > wmin by (3.8) or (3.11), the necessary 
suppression of the above-mentioned (wf,)-" correction terms would force one to 
place the minimum or the knee to h-equency values much below wmin. This is shown 

1 A, = -~ 
2[r(1- a)r(a  t z) - XI 
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Feure 8. Correlator G(t) and loss speclmm ~ " ( w )  within the Wnsition region for 
X = 0.74 and a/bo = fS.210-'. The broken c u m  are lhe series expansions described 
in the e t  and the chain cuwe is the interpolation (3.17). The curves A* refer to 
u / q  = i5.210-'. ?he crosses denole the wn Schweidler law 2'' (x l/w*. 
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Figure 9. lhe Same as figure 8 for X = 0.91 and u / q  = 5.210-'. A* refer IO 
a/ao = f5.210-'. 

by the fit curves A* in figures 8(b) and 9(b). Closely following the linear relation 
log f (w)  = a log w + anstant until the minimum is the most remarkable qualitative 
difference of the susceptibility spectrum in the transition region as opposed to that 
in the liquid. This is evident for cuwe 4 and 5 in figure 2 It is also apparent in the 
raw data shown in [U] for CKN at T % 100' C; an observation which allows in that 
case to estimate T, within &15" C 

3.3. p-minimum dynamics 

The critical decay law (2.3) yields the sublinearly valying critical susceptibility 
spectrum (AS) within the high-frequency part of the p-relaxation window. The 
spectrum matches the microscopic excitation band at some frequency wmic ~ i l  l / f u .  If 
one denotes the spectral intensity x"(w = wmie) = xmic, one can \nite the critical 
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spectrum as $(U) = xmi,(w/wmi,)". A major prediction of the MCT is that the 
susceptibility spectrum below the microscopic band is strongly enhanced wer  the 
expected white noise background x;'(w) = xmic(w/wmic). Because a < 0.4, one 
indeed finds for w < wmiC that $(U) B xi(w). The a peak is located at 
some frequency I/r, outside the p region. It produces, with its high-frequency 
wing for WT, > 1, a susceptibility spectrum that decreases with increasing U. 
Thus there appears a spectral minimum at w = omin, where the spectral intensity 
x"(wmin) = xmin is strongly enhanced over the white noise background. This holds, 
unless there is some mechanism of suppressing the critical spectrum. The @-relaxation 
theory describes a part of the high-frequency a-peak wing, thereby establishing a close 
link between a and @ relaxation. The Spectral minimum is the most outstanding 
feature of the p-relaxation dynamics. It will be shown that the spectral shape near 
the minimum and the scaling of the parameters wmia and xmim with variations of T 
are characteristically different for the three regions U < -U", 1u1< U" and U > U" 

introduced above. 

3.3.1. The p minimum for rhe liquid region. Again we consider the case U < -uw If 
t ,  < t f, the hopping term can be neglected. Then series (As) is the appropriate 
solution. Noting the von Sehweidler term and its leading correction only one gets 

G(t)  = -B- 

with 

(3.15) 

(3.16) 

These formulae are merely the long-time expansions of the scaling law of the simplc 
version of the MCT (1.5) and (1.8). The constant B- is tabulated as a function of 
X in [9]. The result (3.15) matches (3.8) very well for t zz t u ,  as shown in figures 
4(a )  and 5(a). It continues the convex C ( t )  against log1 graph to longer times 
exceeding 1,. Similarly, the susceptibility spectrum is continued on the left part of 
the minimum. The scaling propertics of the minimum are noted in (3.10). Upon 
cooling the cage effect becomes more efficient. This slows down the dynamics as 
reflected by the decrease of amin, xmln upon approaching the transition region from 
the high temperature side. 

The minimum is formed by the crossover from the von Schweidler fractal (All) to 
the critical fractal (AS). The spectrum is stretched over several decades and exhibits 
the large enhancement Over the white noise background, discussed above. Let us 
note for later reference that the 0 minimum of the liquid is described well by the 
handy interpolation formula 

(3.17) 

This is exemplified by the chain curves in figures 4(b) and 5(b). The series (A9) is 
semiconvergent only [9], and can merely be used to evaluate G ( t )  for large times 
asymptotically. This means that matching can in general not be improved by extending 
(3.15). 
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3.3.2 The p minimum for the glass region. For positive separation parameters, Le. 
T < Tc, a solution of (22 )  is provided by the series 

(3.18) 

The parameters a and 6 enter 2, and 5 via (1.7b) and (3.5). The coefficients B: 
are a-6-independent functions of A; BT = -1 /2  and the other terms follow from 
(A14). This function can be considered as the a-process contribution to the dynamics 
within the &relaxation window. The solution G,(t) of the scaling equation (2.2) is 
not identical with the 0 correlator, since it does not exhibit the initial condition (2.3). 
Therefore let us write 

G(t )  = G,(t) + G , A f )  (3.19) 

where G,(t) shall be viewed as the proper part of the process. For very 
small times, the function Gp(t)  has to agree with the critical correlator. Since 
G,(t < tu i) = x, whenever CJ > au, one finds G,(t) to agree with the 
short-time solurion (3.8) up to the subtraction term x,: 

GpO) = c,g+ (tit,) - X, t < t o .  (3.20) 

Let us anticipate that Gp(t)  decreases to zero with increasing time, so that one can 
define the waiting-time moments 

(3 .21~)  

Since G,(t) obeys the Same scaling laws (24 )  as the full correlator C(t) ,  this is true 
also for Gp(t) .  Therefore 

Mn(0,6tu) = &fn!2-'-n. (3.21b) 

The moment M ,  for (a, 6t,) on a scaling line through (6, &) can be expressed by 
&fn = Adn(&, 6 )  up to a scale factor. The Laplace transform of the correlator can 
be written as 

G ( z )  = G , ( ~ ) + i t , ~ ( i + t , ) ~ M , .  (3 .21~)  

Let us apply (3.21b) with Q = la11/2a. Using the scales of section 3.1 one 
fmds M,(a, 61,) = ( t , / tU)"+'e ,&f , (1 ,  z) with I = ( U ~ / U ) ( ' ~ ~ ~ ) / ~ ~ .  Anticipating 
A?,( 1, I) to be smooth in I for I -+ 0, one gets the result 

n 

M n u  p t l  = p t l  U COY, O B  mu. (3.22) 

The y, can be evaluated as moments of (gt - 1/m) from (1.5) and (1.7). The 
power series in (3 .21~)  is useful only for 1zt,1 < 1. For vanishing hopping rate 6 ,  
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the a tail is ffivial: G,(t) = x,. Thus there must exist a scale wmi,, which vanishes 
for 6 - 0 and specifies the onset of deviation of G,(t) from the plateau value 

G(t)  = x, t- < t < wik. (3.23) 

Combining the preceding three equations one derives for the p susceptibility for 
W.i" Q w < t,' 
x(w) = [x, - c,(wt,)2~l t ...I t i c , ( w t , ) [ y u - ( ~ t , ) 2 ~ 2 t  ... 1. (3.24) 

In section 3.22 it was shown that the correlator tends to arrest at xm for t = 1,. 
Equation (3.23) shows that it continues to do so up to the currently unspecified larger 
time w,& as exemplified in figures 6(a)  and 7(a). The susceptibility spectrum ~ " ( w )  
continues the adependent knee, discussed in section 3.2.2, as shown in figures q b )  
and 7(b). In leading order the spectrum is a white noise spectrum: 

fl(wm+, < U  < ti ')  = Mu(wto) Mutu = C,,t,yu. (3.25a) 

The reactive part of the susceptibility is a constant in leading order: 

X'(Wmin < w Q t i l )  = x,. (3.256) 

Equations (3.25) imply that within the specified window the a-peak tail 
contribution to the spectrum can be neglected compared to the proper p spectrum. 
However, there is a non-trivial contribution to the reactive part x,. It can be 
measured in principle, for example as the reactive part of the elastic modulus. It 
determines the high-frequency sound velocity in the window, where a-relaxation 
dispersion is as negligible as p-relaxation contributions. Kramers-Kronig relations 
connect xm with spectral integrals. With (1.1) one fmds 

(3.26~) 

(3.266) 

The first integral has to be extended over the window w < wmin and the second over 
In w < In wmin. The frequency wmln defines naturally the upper end of the a peak. 
The WIS of (3.26) is the a-peak area. The quantity hXXm is thus identified as the 
temperature-dependent contribution to the a-peak intensity. This is a further link 
between a- and &relaxation established by the MCT. The temperature dependence is 
singular, since (1.3) and (1.7b) imply x, a 6 a m. Measuring the a-peak 
area for U > U" yields the separation parameter and therefore by extrapolation the 
critical temperature, as shown in [12-141. 

For times excecding wii;, the proper p process dies out. The series (3.18) can 
be used efficiently up to order f ,  and so 

G ( t )  = G,(t) wii: < t < i. (3.27) 

The corrclator G,(t) describes, within the specified t range, the onset of the cage 
decay as enforced by hopping effects. This is shown in figures 6(a)  and 7(a). The 
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corresponding susceptibility is given by the Laplace transform of (3.18). Since the 
regular contributions due to G p  can be neglected for small z = w + io, one finds 

x(z)  = xw(-l - x l ! B r ( - i z f ) - f )  f-' < lzl < wmin. (3.28) 
1 

The highest-frequency part of the LI process follows a stochastic dynamical pattern 
as described, for example, by a Debye law. In particular, the absorptive part exhibits 
the regular decay: 

x"(f-' < w < wmin) = M;/w  MA = x,/Zi. (3.29) 

This is shown in figures 6(b) and 7(b). 
Formulae (3.24) and (3.28) describe the high- and low-frequency parts respectively 

of the p minimum within the glass, hence the notation for the relevant scale wmh. 
The derived asymptotic formulae (3.24) and (3.28) do not match well for w GZ wmi,, 
cf figures 6(b) and 7(b). An obvious interpolation between the two asymptotic parts 
(3.25~) and (3.29) is provided by x;, = M,w + MAW-'. This leads to an analogue 
of (3.17): 

(3.30) 

The chain curyes in figures 6(b) and 7(b) demonstrate that this expression works quite 
well. Substitution of the explicit expressions for M,, M; yields for the minimum 
parameters 

"min = -/& g Xmin =y;c,*-= -/;&luI-"4a. (3.31) 

Here tg is given in (3.6) and rf = 1 / d m ,  7," = are expressed 
in terms of the spectral weights 7, of the glass master functions g+ in (1.5'). which 
are tabulated in [9]. 

Within the glass the p minimum is formed because hopping effects suppress the 
critical spectrum. The spectral shape is utterly different from that found in the liquid. 
There is no stretching, but a crossover from stochastic spectral decay (3.29) to white 
noise (3.25~). Moving into the glass by increasing U ,  the system becomes stiffer 
and therefore wmio increases upon cooling for fixed hopping rate (6t,). This is the 
same effect, discussed above for the spectral knee in (3.12). Similarly, if the rate 6 t ,  
becomes bigger, the hopping effects can dominate for larger frequencies and so wmio 
rises with 61,. Upon cooling 61, is expected to decrease [SI. This effect might partly 
compensate the mentioned increase of wmi,, a situation exemplified in figure 2 by 
the evolution from state 6 to 7. The decrease of 6 might even overcompensate the 
stiffening as exemplified in figure 2 for state 9 relative to state 8. On the other hand, 
an increase of U implies a decrease of xmin. Upon moving into the glass the spectral 
intensity due to the sluggish motion near the critical point gets suppressed. Lowering 
the hopping rate further reduces the intensity xmin. It would be very helpful for a 
judgment of the relevance concerning the present theory to test the predictions on 
the p minimum for T < T, by experiment. For CKN the interesting window would 
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extend 2-3 decades below 10 GHz, as can be inferred from [U]. The window is 
outside of the spectrometer range used for the light-scattering experiment in [D],  
but it is accessible by modern dielectric loss spectrometers. Due to the factorization 
property (Ll), both experiments test the same p dynamics. The predictions refer to 
a minimum in a broad background and therefore the experimental difficulties will be 
connected with signal-against-noise problems. 

3.3.3. % p minimum for h e  Ironsirion region. A solution for lul Q u, is searched 
for that extends the short-time expansion (3.13) to f B t6.  The series (A12) and 
(A15) are candidates. The former can be used for AX < 0, since only for b > 1/2 is 
the series asymptotic for f 4 CO. Because c < 1/2 one can use (A15) as a large-time 
expansion for AX > 0. Replacing Eo in (A12) by B = B , ( 6 ) - 1 / 2 t ~ - ' / 2  and C, in 
(A15) by B = Cuts, one gets 

(3.374 

G ( f )  = -(AX)-'/*c, (:&)"'[ - 1 + , C, ( B- : s ) f ' - i ) ]  b <  i. (3.32) 

The parameter E is constant on a scaling line. For o = 0 the expansion thus found 
provides the large-time asymptotics of the master function g in (1.10): 

(3.33~7) 

As explained in the last paragraph of section 3.3.1, the summation should be extended 
to the smallest value I = I,, for which b - I(26 - 1) or 4 - I( f - c) is negative. For 
example in figures 8 and 9 one gets I, = 8 and 3 rcspectively. The figures show that 
the series do not match nicely with the short-time expansion (3.13). 

The correlators (3.32) describe the initial part of the a process, where G( t) < 0. 
The corresponding susceptibility spectrum is the high-frequency a-peak tail, cf 
figures 8 and 9. The dynamics is controlled by the hopping effect. The stretching 
of the relaxation is not as strong as within the liquid. This is reflected by the lower 
bound for the von Schweidler exponent. Furthermore, the logx" against logw 
curve is steeper near the minimum than given by the von Schweidler law. The 
spectrum, which forms the low-frequency wing of the p minimum, falls below the von 
Schweidler asymptote, shown in crosses in figures 8(b) and 9(b). 

As in the liquid region, the p minimum in the transition range is obtaincd as 
a crossover between two fractals specified by a and b or 5 respectively. This is a 
qualitative difference to that predicted for the glass. But, as in the glass, the crossover 
from one side of the minimum in the log x" against log w curve to the other is rather 
sharp; only one decade in figures 8(6) and 9(b). This is the qualitative difference to 
the spectral shape of the liquid. Thii difference is demonstrated most clearly by the 
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failure of the fit formula (3.17) as shown by the chain curves in figures 8(b) and 9(b). 
The scaling law (1.10) implies the a-insensitive minimum parameters 

(3.34) T 
wmin = 7T/t6 Xmin = 7 2  c6 ’ 

With increasing hopping rate Sf, the spectrum increases, thereby shifting wmin to 
larger values. The frequency range for the critical decay is largest for a = 0, as 
is obvious from figure 3 and as is exemplified by curves 4 and 5 in figure 2. A 
measurement of the spectrum in the transition regime would be the most sensitive 
means to lix the exponent parameter A and the value for the rate 61, for T = T,. 
Determination of the spectral shape on a three-decade window would provide a severe 
test of the present theory. One knows from [23] that the relevant dynamical window 
for CKN extends from 10 MHz to 10 GHz. 

3.4. Very long-time dynamics 

For times exceeding f and t6 the hopping term 61 in the scaling equation (2.2) 
dominates the solution. The corresponding dynamical regime is described by the 
series (A12) and (A15) for AA < 0 or AA > 0 respectively. The regime is shared 
by the liquid, glass and transition region and should be considered as an extension 
of the latter, cf figure 3. The results (3.32) hold for sulficiently large times not only 
for a < a, but for all a. The a dependence enters via the parameter B only. Let 
us consider the details for glass and liquid separately. The term B, in (A12) shall be 
replaced by 5 = B,/(&ff(i-2b)/*). This is equivalent to writing B = f(f/ia)(i-zb)/z 
in (3 .32~)  and yields 

Similarly one writes [ = 1/m in (A15). This is equivalent to the substitution 
5 = (t6/Bf)’12 in (3.32b) and leads to 

The parameter E = < ( U ,  6 )  = [(C, 8 )  is constant on scaling lies. Hence one shows 
as usual that it is independent of control parameters deep in the glass a B aw 
The results scale like G,(t) as studied in equations (3.18) and (3.27). Hence (3.35) 
continues the hopping induced decay-of the cages, whose onset was discussed above 
in 3.2.2. There is good matching of the present results with G,(t) for t = f, as 
shown in figures 6(a)  and 7(a). The susceptibility spectrum equivalent to (3.35) is 
the low-frequency end of the 0 regime. It describes fractal decay again, as given in 
leading order by the yon Schweidler law with exponents b > i or b = i. Hence the 
a-peak wing exhibits a knee whose parameters sensitively depend on U and 6 via 

w; = $/f x; = yz”J;;. (3.36) 

This knee marks a crossover from fractal ct decay for w < w; to stochastic decay 
for w B w;, as shown in figures 6(b) and 7(b). Notice that X E  scales like the 
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a-peak intensity. Measurements of U as the a-peak area are therefore not falsified, 
if thc frequency cutoff in the integrals (3.26) is placed somewhere in the interval 
wz < w < wmiB instead of at the minimum. Shifting the system into the glass 
by increasing U decreases U;. The left part of the stochastic p-minimum increases 
thereby, as shown by the curves 7-9 in figure 2 Measurements of the regular variation 
of the knee position wK D: CT or of the correlator zero G ( t , )  = 0, f, x U, would be 
relevant tests of the present theory. 

The long-time relaxation of the liquid, CT K -uu, is handled as above, albeit 
only if b > f .  In this case the long-time expansion (3.32~) or (3 .35~)  can casily be 
rewritten, for example by using Bi = E26(l,)1-Zb in (A12). This matching parameter < can be chosen such, that matching with (3.15) is established for f a f, as shown 
in figure 4. Since the leading term in (3.15) has the Same exponent b as in (AlZ), 
the two series describe so closely the same von Schweidler decay pattern that no 
particular anomaly for t a 5 or w a f-' can be detected in figures 4(u) or 4(b). 

For b < f again (A12) shall be used, where B, is replaced by some other 
coefficient < = B , , t ; / m .  The series is 

(3.37) 

where the Scale f,, equation (3.7), obeys the condition t J f  > 1 for CT K -uw The 
leading term exhibits the same scaling as the one in (3.15). Good matching between 
these formulae is possible for t a 8, as shown in figure 5. Equation (3.37) extends 
the initial part of the a process, as described by (3.15), to times of order t,. No 
particular anomaly in the dynamics is apparent for 1 a i or w a I/f .  The series 
(3.37) cannot be used for times exceeding t,, since (1 - 2b) > 0. For 1 % t ,  there 
occurs a crossover to a law like (3.356) as shown in figure 5(b). With the choice 
E = 1 / a  in (A15) the expansion runs 

(3.38) 

For w = l / t ,  the a-peak tail exhibits an anomaly, but a different one from what 
was found for the a peak in the glass. With increasing frequency the von Schweidler 
decay x" o( crosses over to an even stronger stretching x" D: w - ~  with b < f .  

4. The liquid-to-glass cmssover 

In section 3 the shapes of the p correlators and of the susceptibility spectra were 
discussed. They were characterized by various scales. The latter had bccn introduced 
in an ad hoc manner and they were related to measurable quantities only in limiting 
cases. In this section the liquid-to-glass crossover shall be characterized by various 
scales to be identified as measurable features of the spectra. Let us remember the 
timescale t 6 ,  the correlation scale c6 and the separation scale nu, induced by the 
hopping rate 6 t ,  via the formulae (3.2) and (3.4). They arc connected elementarily 
by uu = (to/ts)z" = c:. Applying (2.4) with Cl = l/t, one gets 

G(t)  = CsS(t/f6,U/uu~6^= 1) = C 6 ~ ( f / f 6 ~ g / g u )  (4.la) 

x(w) = C6X(wf.$r ./flu? 6  ̂ = = C62(wt6,  a/.") (4.lb) 
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where the master functions G and 2 are specified by A. In practical applications 
the precise connection of the relevant control parameters U and 6 with the physical 
control parameter T is not known. But these functions are smooth; 6 is positive 
throughout and U defines T, by its zero as specified in (1.3). Figure 10 comprises 
the contents of the scaling equation (2.2) for the exponent parameter X = 0.91. It 
exhibits against log(t/tS), log(y)  and 2 against log(wt6) for a representative 
set of U and constant 61, = 1. The examples characterizing the liquid, transition and 
glass regimes, explained in figures 5, 7 and 9 above, are shown as full cuwes. 

The most obvious parameters specifying the scales of the relaxation process are 
the position of the susceptibility minimum and the spectral intensity for this 
frequency xmin = x"(wmin). Because of (4.lb) there are two crossover functions 
f l(z),fz(x) so that 

Wmin = f 1 ( . / q J / t a  Xmio = f Z ( U / U " ) C 6 .  ( 4 W  

The functions f l ,z  and similar functions below are independent of control parameters 
U and 6. They are completely given by A. From (3.10) one finds for the asymptotics 
specifying the ideal liquid state: 

f1(. a -1) = Y:lsl'/z' 

f1(+ > 1) = y p l + l ( ' - ~ a ) / 4 ~  

fz(+ a -1) = y k 1 ~ 1 ~ / ~ .  (4.26) 

From (3.31) and (3.6) one derives the asymptotics within the glass state: 

fi(. > 1) = y:l+l-'/4a. (4.2) 

The values of the functions for zero separation parameter have been introduced in 
(3.34): 

fl(. = 0) = 7: fz(. = 0) = y:. (4.W 

The upper two parts in figure 11 exhibit ( ~ ~ ~ t ~ ) " '  and xiiD against separation 
parameter U. The full curve represents the result for U" = 1 and hence the master 
functions fp and f: respectively. The broken curves are the asymptotes (4.2b) and 
(4.2~). The results for other U, are found by rescaling according to (4 .2~) .  This 
is demonstrated by the two chain curves. For U, 3 0 the curves approach the 
asymptotes on the liquid side. These asymptotes are the result of the simple version 
of the MCT, dealing with the ideal freezing of the liquid. In the limit S t ,  - 0 the 
functions converge towards zero for U > 0. Notice that measurements of either 
diagram for a given temperature-independent 6 t ,  would yield u ( T )  and hence the 
critical temperature T,. Let us combine the results to a third crossover function 
connected with the minimum: 

f d o f  "U). (4.3) 
(1-0) f 2a 

Wmin%l/Xmio = U, 

Since f3 = fl f f2 one derives the asymptotes from (4.26) and (4.2~). The defined 
combination approaches 6-independent asymptotes for the liquid U << -U, as well as 
for the glass U > U", which are proportional to Figure U(c) shows this 
crossover function. Due to the insensitivity to temperature variations of E t ,  this plot 
is suggested for an identification of T, from below and from above ,Tc. 
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Figure 10. B mrrelators G as a function of log I 

. .  
O '  - 2  

' Figure 11. Quantities specifying the susceptibility 
and P susceptibililies .y'+ix" as a function 01 1 0 9 ;  minimum as function of the separation parameter 
for exponent parameler X = 0.91 and hopping u, see text, The open circles are numerical results 
rate 610 = 1. From below lo above lhc N N ~ S  for 6 t0  = 1 and the chain CUNS I and 2 are 
in (a) and from above lo below the curves in ( b )  rescaled for 610 = lo-' and respeclively. 
and (c) refer to 0 = -13.9, -7.2, -3.7, -1.9, Ihe bmken ~ U N S  are the various asymptotic laws 
-1.0, -7.2 x IO-?, ~ 5 . 2  x IO-', 7.2 x 
1.9, 3.7, 7.2, 13.9. The lhree full CUN~S refer 
to the paramelem discussed in figures 5, 7 and 9 
respectively. In (a) the symbols from left 10 righl 
respectively mark w i l ,  t i ,  w z i  and ( W E ) - ' .  The 
mosses in (6) exhibif the interpolations (4.4). 

1.0, derived in the text. 
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Within the glass the susceptibility spectrum exhibits two h e m .  A possibility 
to define in a practical manner the parameters of the high-frequency knee wK, xK 
discussed in 3.2.2 and of the low-frequency knee w e ,  xg discussed in 3.4, is the use of 
interpolations for the data in the neighbourhood of the knees. For the low-frequency 
knee we propose 

x,K,"(w) = 2X;;/KW/WK")* + (w/w;;)l. (4.44 

Here 6 has to be replaced by t in case of X > A,. For the high-frequency hee one 
can use 

xgt(w) = 2XK/[(wK/W)a -k ( w K / w ) I .  (4.46) 

Instead of the interpolation (4.4b) it seems more promising to study a plot of 
x"(w) /J i j .  Due to a < 0.4 this plot results in a maximum at wK. The crosses in 
figure 10(b) demonstrate that the interpolations (4.4) are quite good for u/uu = 13.9 
and define the knee parameters well. The preparation of the maximum at wK leads 
to comparable quality in determining wK and xK. Each knee is described by the two 
crossover functions 

O K  = g1('/uU)/t6 XK = g2('/uUo)C6 (4.5) 

= !?P('/uU)/t6 XK" = &('/uU)c&. ( 4 4  

Notice that these functions are defined only for u/uU > x* > 0 or u/uU > x; > 0 
respectively, since there are no h e e s  in the liquid. For X = 0.91 one finds 
e* ~3 x; ~3 1.2. From (3.12) one finds for the asymptotes for the high-frequency 
knee 

g1(z >> 1) = Y:Ix11'2= 

&(x >> 1) = r;Ixl-' 

SZ(" >> 1) = Y,Kl"l"Z. 

gT(x >> 1) = ~;lel"*. 

(4.7) 

From (3.36) one finds the asymptotes for the a-peak knee: 

( 4 4  

For X = 0.91 the master functions follow the asymptotes (4.7) and (4.8) very well. 
Identification of wK and xK therefore is a good method to determine T, from the 
low-temperature side. 

Within the liquid p dynamics for b < 4 one finds a crossover between the two 
von Schweidler laws referring to exponents b and 2 respectively. The crossover can 
again be described by some interpolation formula. In sectian 5 it will become clear 
that a-relaxation corrections in general mask this feature of the p dynamics. 

In figure 12 the various scales defined as obvious features of the log X" against 
logw diagrams are exhibited. This figure, as opposed to the schematic diagram shown 
as figure 3, demonstrates the crossover dynamics in quantitative detail. 'bgether with 
the discussion of section 3 it exhibits the full contents of the scaling equation (2.2). 
Let us emphasize that the identified scales do not show up so clearly in the G(t) 
against logt or x' against logw diagrams, as can be inferred from figure 10. The 
only obvious scales suggested by the latter two quantities are the zeros: G(t,) = 0 
or ~ ' ( w , )  = 0. But these numbers are not directly measurable. Accessible to 
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Figure U. The various timescales calculated as function of U for X = 0.91. ?he 
full curves denoted ty min. K and K,  are lhe inverse of Ihe frequencies specifying 
the position of the minimum, Ihe high frequency knee and the low-frequcncy knee in 
the susceptibility specwm respectively. The broken curves are lhe short timesale t,. 
defined in (5.1) and to for 610 = lo-*. The chain C U N ~ O  with lables 2, 6, 
8, 10 denote the 01 =le te ,  defined in (5.6) for 6 t 0  = lo-?, 1W6, 
respeclively. Crcses on the 6to = 10-1 ~ u w e  mark lhe values ol u/uo where U = f l .  
DOIS on the chain curves mark the places where t .  = i. The asymplole (5.8a) for t. 
is shown as lhe dotted curve for rhe lhree values of 6 t o  = ?he 
asymptote (5.10b) for t.. denoted by a horizontal line, m m p o n d s  lo 6t0 = 

and 

IO-* and 

experiment is the full correlator @~y( t )  or the full reactive part of the susceptibility 
xk. T h e e  quantities differ from the one displayed in figure 10 by constants fi 
and & respectively, equations ( M a )  and (Llb) .  But these constants are not easily 
accessible. Uncertainties in these numbers enter as uncertainties of t ,  or wZ.  

Some of the experimental tests of the ~ c r  predictions dealt with the determination 
of the a-peak area fx or the high-frequency response xy. Within the simple version 
of the MCT, treating a model of an ideal transition 61, = 0, these concepts are well 
defined mathematically. We could not invent a completely satisfactory definition of 
these concepts within the present theory so that the quantities are directly accessible 
by experiment. Tb propose measurable quantities which are as close as possible to 
the concepts of the idealized liquid-to-glass transition picture, we proceed as follows. 

S Y  = @ X ( t i )  (4.9a) 

an effective Debye-Waller factor or Edwards-Anderson parameter for variables X 
shall be defined. Here ti is the inflection point of the @ ( t )  against logt curve. 
Bccause of (1.h) one gets the prediction 

BY 

j x  = fg + h x A f .  (4.96) 

Here A i  is the part of fx that varies rapidly near the glass transition singularity. 
It is given as A f = C(ti) and dee in the glass it is the plateau value of the p 

one obtains a scaling law expressing the crossover in terms of a master function h: 
correlator, which is exhibited for wf 7 d: t d: (wZ) - l ,  cf figure lO(a). From (4.la) 
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A f = c 6 h ( a / a , )  . From (1.5) and (1.76) one derives 6-independent asymptotes 
within the liquid or the glass: 

- 

A f ( u  < -U,) = rim Af(u >> U”)  = m/m.  (4.10) 
Here the number yi = g-(ti/t,) is small but not zero. If it was zero, then by 
definition (4.9) jx would be identical to fg in the liquid. EQure 13 displays the 
master function h for 6 t ,  = 1 and the asymptotes of the ideal transition scenario. 
The curve exhibits the smooth crossover as caused by hopping effects. The data 
analysis in [I31 applied concepts close to the above prescription and the reported 
results indicate a rather small value of 64,  for polybutadien. 

Figure U. EBective non-ergodicity parameter Af = G(ti)  for 6to = 1. ’The h k e n  
mwe8 are the square root asymptotes specified in Ule text. 

The high-frequency tail of the a peak is identical to the low-frequency part of 
the p process. Therefore any theoretical discussion of the stiffness of the system in 
the regime w r a  >> 1 requires an understanding of the p processes. A natural limit 
of the a-peak process, which is directly measurable, is given by the minimum of the 
susceptibility spectrum, wd By 

2F = x’x(w = W ~ ” )  (4.11~) 

an effective high-frequency susceptibility shall be defined, which generalizes the 
corresponding concepts of the simple version of the Mm. From (1.16) .one gets 

2Y = X$ + h.y%L. (4.116) 

Here 2% = x’(wmin) is that part of 2p that varies rapidly if the control parameter 
approaches the glass transition singularity (u ,6 )  + 0. As above one finds the 
crossover as a scaling law 2% = c6hm(u/uu) ,  with 

?:(U < -U,) = y y m  ~ L ( U  >> U,) = m/diTX. (4.12) 
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Within the glass one finds the square root asymptotes given by the results of the 
ideal transition scenario, equation (1.7b). Here formulae (4.9a) and (4.11~) lead 
to the same result. Again in the liquid 22 differs from x;r due to the small 7: 
only. Numerically it is found for X = 0.91 that the master curve ha differs from 
h only slightly. In [25] a high-frequency acoustic modulus M ,  was determined by 
a rather involved least-square. fitting analysis of Brillouin scattering data. The data 
were discussed in relation to the MCI. However, we are unable to decide whether such 
a fitting procedure corresponds to the above suggestion of determining M,. This 
especially holds in cases T > T, where a and p processes are not clearly separated. 

5. The relaxation regime 

The p relaxation regime is limited to small values for the separation parameter U and 
the hopping rate 61,. It is an asymptotic expansion near the glass transition singularity 
( U , & )  - (0,O) dealing with correlators Q X ( t )  close to the corresponding non- 
ergodicity parameter &. The time has to be sulficicntly large in order to eliminate 
short-time transient motion and corrections to the p- scaling equation. But it also has 
to be shorter than the scale specifying the a process. In this section the limits of the 
p regime shall be considered in more detail. Within a specific model the corrections 
can be calculated with the B correlator C ( t )  as input For small ( U , & " )  and close 
to the critical non-ergodicity parameter the corrections are of order G ( t ) z  in general. 
There are further contributions proportional to U and 61 which are independent of 
G(t) .  The corrections to the leading asymptotic are not universal and therefore in 
the following only order of magnitude estimations can be presented. 

A short-time cutoff 1, can be defined by requiring the correlator Q x ( t )  = 
f;r + hC,G(t) to be close to the non-ergodic value: 

G(t , )  = 1 G ( t )  < 1 for t > 1 , .  ( 5 4  

The X dependence of this definition has been omitted. Elimination of the short-time 
transient motion further requires t > tu, i.e. for (U,&, )  -+ (0,O) P dynamics will 
be observed for 

t > t ,  and t > t u .  (5.2) 

ts = t 6 f s ( n / u u > u u )  (5.3) 

Equation (5.1) can be solved leading to 

where f, dcpends explicitly on U and 6, i.e. it does not obey a one-parameter scaling 
law. In the liquid case for U K -mu and if 1u1 < 1 the correlator G, can be used 
in (5.1) to get 1,  sr: t u .  In the glass U B uu the plateau value xm = d m  
becomes larger than unity leading to t ,  > f > t,,,,,,. For such high values of m, where 
the plateau moves out of the specified region around &, the mentioned correction 
terms, which are independent of C(t), are in general not small even if G(i) < 1. 
Figure 12 shows 1, and t u  for different values of 6t,. A maximal value 6' for the 
hoping rate 6 can be obtained by requiring the minimum in ~ ' ' ( w )  to be in the p 
window: 

t,,, 2 max(t, ,tu) for6 < 6'. (5.4) 
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From figure 12 it can be seen that equations (5.1) and (5.2) lead to 6.1, % IO-* for 
a = 0.2. 

If 6 is close to the maximal value 6', the separation parameter U is restricted to 
the transition regime 

1u1< U" for 6 % 6 * .  (5.5) 

In this case only the relaxation patterns, discussed in figures 8 and 9 can be described 
by the present theory. The interesting evolution of the liquid p spectrum into the 
transition regime upon increasingly negative U towards -uu and the evolution out of 
the transition regime upon increasing U above U, lies beyond the range of applicability 
of the present theory if 6 % 6'. In this case the hopping effects are so efficient that 
they mask the results expected within the simple version of the Mm, dealing with an 
idealized liquid-to-glass transition. 

If 6 is sufficiently smaller than the maximum value 6'. 1u1 is allowed to exceed U" 

and the idealized cage effects can be observed. In the liquid state requiring separation 
of microscopic and p timescales lead to U > -la'/. In the glassy state the region of 
validity is restricted by the condition that the time tmi, should exceed 1,. This gives 
an upper cutoff U < [U ; ] .  In general [ut/ # [.;I and both depend strongly on 61,. 
The restriction [ U [  < 1 however may not be neglected, i.e. I u ; ~ ,  [ut[ < 1 has to be 
hold. 

The p correlator diverges for large times, too. On the other hand, the complete 
correlator is bounded IaX(t)l < Q X ( t  = 0). Thus a natural large-time cutoff 
1, appears by the requirement Q x ( t , )  = fx + h,G(t,)  = - Q X ( t  = 0). For 
times comparable to 1, the odecay process, which is not treated within the present 
theory, depends on X. Ignoring this A' dependence one gcts for ( U ,  6) + (0,O) an 
estimation for the specified scale characterizing the onset of the 01 corrections to p 
dynamics from the equation 

G(t,) = -1. 

From (4 . la)  one finds 

t ,  = f,(u/uuo,ou)ta. (5.7a) 

Here the function f,(z,y) of the two variables I = u/uu and y = U" does not 
exhibit homogeneity properties. It follows via (4 . la)  as the solution of the equation 

Wff(z,%!),=)d3= -1. (5.76) 

The chain curves in figure 12 exhibit the results for three values of 61,. 

correlator in order to derive 
Within the liquid state one can use the von Schweidler law (3.15) for the 

1 1  
y = - + - 2a 26 1, = tu/[(B-)'/*1UI-q - 1 < < U  << -U,. 

Using the von Schweidler asymptote requires 

1, << 1,. 
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This condition is ensured by the requirement 101 <( .-(A) < 1, where c-( A )  denotes 
a constant depending on X only. Volation of (5.86) implies that the a relaxation and 
the p process merge and are dose to the microscopic transient motion. This merging 
cannot be described by the simple power law (5.8~). In figure 12 the asymptote (5.8~) 
is shown for three values for 61,. For 64, = the corrections of (3.15) to the von 
Schweidler asymptote are not negligible due to U being too large. The corrections 
determining c-(A) depend strongly on X and arc large for the case X = 0.91. The 
used von Schweidler law ignores the influence of hopping events and this requires 

t ,  Z or - U B U, = [ 6 t , / ( B - ) ' ~ * ] * " b ~ ~ a t b t 2 a b ) .  (5534 

If t ,  approaches f, the hopping effects modify the udependent prefactor in (3.15) 
and this alters the power law variation (5.8~). The corresponding points, where 
t, = f are marked by dots in figure 12. 

Within the transition region 161 Q cr,, one can use (3.32) to solve equation (5.6) 
for t P .  Due to having more than one divergent term in (3.32) for 8 - CO one can 
analytically find a solution only for 6 t ,  - 0 also: 

t ,  = t 6 / ( B C 6 ) 1 ' b  b > 112 Q 00 < 1 (5.9a) 

t ,  = ta(ax/d) b < 1/2 [U1 Q 00 Q 1. (5.9) 

If 6 < 6'. one gets t ,  B t6.  Fbr 6 --t 6' the a, p and microscopic process merge 
so that the dynamics near the minimum can no longer be described by the present 

For the glass state the equation (5.6) is solved with the dominant contributions 
from (3.35). Using only the leading von Schweidler asymptotes with b > 1/2 or 112 

theory. 

' leads to 

t ,  = f / ( 6 [ ) ' I b  for b > 112 (5.1oa) 

1, = (AX)/6 for b < 112. (5.1ob) 

The restriction 1cr1 Q c+(x) < 1 or t ,  B f has to be fulfilled for equation (5.10) to 
hold; see the discussion below (5.86). Again the corrections are strongly X dependent 
and determine the constant &(A) .  In the present case, X = 0.91, the asymptote 
(5.10b) is not observed in figure 12. Since c+(X) < c-(A) the corrections in 
(3.35b) even for 61, = do not decay sufficiently fast to open the window 

The relevance of the scale 1 ,  for the theoly of the a process itself is unclear 
at present. Only in the liquid case U < -U,, close to the transition < 1 the a 
process is known to obey a scaling law q x ( t )  = F z ( t / ~ )  and asymptotic matching 
in the von Schweidler regime gives [27]: 

6 0  < 0 e: .+(A) . 

T = t u u - T  for U Q -U, I U ~ Q  1. (5.11) 
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6. Summary 

The MCT suggests the p relaxation as an explanation for the anomalously large 
susceptibility spectra between the microscopic band and the Q relaxation. A 
glass transition singularity is approached when undercooling a liquid. This causes 
a slowing down of the dynamics. At the singularity the separation parameter 
a cx T, - T vanishes, defining the liquid-to-glass crossover temperature T,. Phonon- 
assisted hopping transport introduces one additional relevant parameter 6 into the 
p-relaxation theory; 6 # 0 prevents the physical system from reaching the singularity. 
The MCT calculates the p relaxation for small U and 6, i.e. for temperatures 
T close to T, and for experimental systems where 6 is small. In the specified 
mesoscopic frcquency window various experimental techniques probe the same p- 
relaxation correlator G(1) up to intensity prefactors. The microscopic structure of 
the glass forming system enters G(1) Via one parameter X only. In the idealized 
MCT neglecting hopping transport two master functions gj: describe liquid and glassy 
relaxation respectively. Phonon-assisted transport, Le. 6, introduces a natural scale 
a" for a. Only for lcrl > a" the results of the idealized MCT are recovered. In 
a transition region around T, limited by u(T)  = fa, hopping effects cannot be 
ignored and distort the spectra. 

In the liquid for temperatures T above the transition region, Le. U << -flu, the 
one-parameter scaling law of the idealized MCT ~ " ( w )  = c , x ' l ( w / w ~ )  applies to 
the spectra. The interpolation formula (3.17) well describes the broad crossover from 
the critical power law (w/w,)' to the von Schweidler (w/w,)-*. The minimum 
p i t i o n  varies with the scaling frequency w, c( (T - Tc)(1/20). 

When entering the transition region upon cooling, hopping effects first appear on 
the low-frequency wing of the p minimum. There the idealized theory falls below the 
spectrum. The corrections are due to the interplay of hopping and cage effects for 
w % G = 6/a.  Moreover for X > x/4 the exponent of the long-time limit changes 
from the von Schweidler b to 4. 

Within the transition region the 6dominated susceptibility (1.10) exhibits a sharp 
transition from the critical to the von Schweidler law with exponent b or 4 respectively. 
The critical law wa almost extends to the minimum frequency. The minimum position 
appears at a finite frequency proportional to w6. 

Upon funher cooling a knee on the high-frequency wing of the minimum appears 
when T is below Tc, i e  U,>.". At this h e e  the spectrum falls below the critical law. 
A plot of x"/& against w results in a maximum at wK, which scales with we. A 
prediction of the MCT is that this spectral feature becomes faster upon cooling. The 
full MCT predicts a minimum for T < T, and its complicated dependence on a and 
6. A low-frequency knee at w; o( LJ appears additionally. 

In the glass well below the transition region the idealized P - M ~  describes the 
high-frequency wing of the spectrum. The high-frequency knee at wK o( w, results 
from the crossover from the critical to a white noise spectrum w'. The white noise 
spectrum can only be observed if h e e  and minimum position are well separated. 
The glass minimum depends sensitively on a and 6 (3.31) and (3.6). It is caused 
by a change from a white noise to a Debye-like relaxation U-'. The temperature 
dependence of the minimum position is strongly influenced by temperature drifts in 
6. At the low-frequency knee at wg o( LJ the Debye-like spectrum bends over to the 
von Schweidler or w-1/2 asymptote. 

Due to the inclusion of hopping effects it is now possible to quantitatively test the 
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p relaxation close to T,. Especially challenging are the results in the transition region 
and in the glass. The range of frequencies U, where the present theory is predicted 
to apply, is largest for T % T,. 
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Appendix A. Recursion Felations 

Seven p e r  series can be identified that solve the scaling equation (22) in various 
regions of time and parameters (U? 6). In this appendix the recursion relations for 
the coefficients q for these series will be derived. With two exponents U and v a 
solution shall be written as 

G(i) = tu a 1 t i Y .  ('41) 
'=u~i,... 

Substitution in (2.2) yields 

- 6 t  - tZu[a:rul/r(i + 2U)]  - t2u+y[2aualroi / r ( i  + 2u + 
I 

- [ t Z U + ' U / r ( i + 2 U + I v ) ] C r  ,,,-,, ana,-= = o .  (W 
1 4 3 ,  ... "=U 

Here the following abbreviation is used: 

r,,=r(i+r,)r(i+r,)-Xr(i+r,++,) t , = u + i v .  (Ma)  

The procedure consists of two steps. First, the four numbers U ,  U ,  au and a1 are 
chosen such that the third and fourth terms of (A2) cancels the first two terms. 
Second, requiring the remaining term in (A2) to vanish yields a recursion relation, 
expressing the ai for 12 2 in terms of U ,  U. a", a,. It is written as 

'lha series treat the short-time solution for 6 = 0 [9]. Choosing U = --a one 
obtains ru = 0 because of ( 1 . 2 ~ ) .  With v = 2a and al = u/[2aor,,] the desired 
cancellations are achieved. Equation (A3b) lcads to ai  = a'A:/aZ' , where A: 
depends neither on CT nor on a. The result is for u ~ O  
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Here, and in the following, 1 sums are extended over 1 = 1,2,. . .. The leading 
coefficient A: is given by (3.9), and the others follow with A; = (-1)IAT from 
(A3), where one has to identify 

a = At a,  = AT I, = -a + 21a. (W 
In order to ensure the praper asymptote (2.3) one has to choose A+ = A- = t ; .  
The result (A4) gets the form (3.8) or (3.11). 

A third series provides the short-time expansion for U = 0. One proceeds as 
above but has to choose v = 1 + 2a and a, = -6/(2a,r,,). The recursion relation 
leads to a, = 6'Al/aZ' with A, being independent of 6 and cy. The result is 

G(t) = At-n( l  + ~ A , [ 6 t ' C " / A 2 ] ' )  

with A, @en by (3.14) and the other A, derived from (A3) with 

a,, = A al  = A, zl = -a + 2112 + 1 .  ('47) 

~ " ( w )  = sin($?ra)r(l- a)Awa + O(u-"). 
From (1.9) one gets for the spectrum 

('48) 

Fbr this expression to be positive for large frequencies one has to require A > 0. 
Let us replace A by a positive parameter < by writing A = [ l+z"l; .  Then (A6) 
gets the form (3.13). This choice introduces the appropriate timescale ts into (3.13). 
Furthermore one can easily convince oneself that [ ( U , & )  obeys rhe simple scaling 
law [ (u,6)  = [(&.a^), i.e. it is a constant on a scaling line through (65). Wth this 
choice of A the series in (A6) sums up terms of the form ( i / t , < Z ) ( l + z u ) r .  Leaving 
the scaling line U = B = 0, where (A6) was derived, only requires replacing f = t/ta 
by f = t / &  introduced in (3.1) and the claimed homogeneity of [ follows from 
the central two parameter scaling law (2.4). Analogous reasoning applies throughout 
the paper whenever the zeroth coefficients A,, B, and C, of the expansions of 
this appendix are rewritten with the help of some timescale and a (6,a)dependent 
matching parameter like [. 

The trick used above was to enforce rur = 0 by a proper choice of U. This 
can exploited also with U = 6, because of (1.2b). Formulae for the new series are 
obtained from above by the change a + -b. The analogue of (A4) is the fourth 
series of interest: 

where A- has been replaced by -E;. This series will be applied only for U < -U,, 

hence the notation. The coefficient E; is noted in (3.16) and the others follow from 
(A3) with 

- a = B ;  a ,  = BY = b - 21b. (A10) 

With (1.9b) one gets as the leading term the von Schweidler spectrum for the 
susceptibility: 

x" = sin( f?ib)T(l+ b)( B;)w-'. (All) 
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Since this has to be positive, one finds B; > 0. If one eliminates B; in favour of a 
constant B- by B; = ( f l / t i ) B - ,  one gets equation (3.15). 

The fifth series is the analogue of ( A 9  where A - -Bo. Again Bo > 0 is 
required: 

G(l) = -Butb (1 + ~ B l ( 6 1 1 - 2 ” / B ~ ) 1 ) .  

The first coefficient follows from (3.14) with a + -b and the others follow from (A3) 
with the translation list 

- a =  Bo a, = BI z I = b + ( l - 2 b ) l .  (A13) 

A sixth series is of particular interest since it solves (A2) for all parameter pairs 
U > 0,6 2 0. Let us use U = 0, U = 1. Then rm = rul = (1 - A ) .  Cancellation 
of the first four t e m  in (A2) can be achieved by ai = @ / ( I  - A) = xz and 
at = -6/[2au(1 - A)]. The recursion relation (A3) yields a, = ( 6 / ~ ) ’ $  with 
coefficients B: independent of U and 6. The result is noted as (3.18), where 
B: = 1/2 and for 1 > 2: 

1-1 

B: = - C[(n!(l- n ) ! / l ! )  - A]B:B:-,/[2(1- A)]. (A14) 
n=l  

Another solution is obtained by choosing a. = -xm. However, for 6 - 0 
this alternative would lead to arrest of the correlator at a non-ergodicity parameter 
G(l i m) = -xm, which is lower than the one implied by 0.19). This is not 
compatible with the general properties of the solution of the MCT equations (41. 
Continuity in 6 thus excludes the possibility of au < 0. Examining the B, numerically 
for 1 up to 170 we found a strongly Adependent radius of convergence I Bf1-‘/‘ --L rA: 
r = 0.55 for A = 0.74 and r = 0.14 for A = 0.91. 

The seventh series is found if one cancels the hopping term in (A2) against the 
third term of that equation by using U = 112. In this case -rw = AA from 
(1.11). Thus for AA > 0 and U = 0 a solution is obtained as C(t)  = aut1/’ , 
ou = --. As above the alternative with a positive au has to be rejected. 
This special solution can be generalized to a, # 0 for I >  1, if one ensures rot = 0 
by choosing U = c - 1/2, with c given by (1.2~). The recursion relation implies 
a, = .ICl with coefficients C, solely given by A. The result is 

Here C, = 1 and the other coefficients follow from (A3) with 

a, = C, x, = 1/2+ l ( c -  112). 
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Appendix B. The long-time decay for X -+ rr/4 

The formulae derived in sections 3.3.3 and 3.4 become invalid if the exponent 
parameter X approaches the aitical value A, = ~ / 4 .  In this appendix the decay 
for very long times shall be considered for A = X-n/4 tending to zero. Remember, 
that it is sufficient to study the scaling equation (2.1) for D = 0 

i6/z + XzLT[G"](z) + [zLT[C4(2)]' = 0. (B1) 

For small A one can expand the equations (1.2b) and (1.2~)  for the exponents b and 
e: 

A =  -2C(b-1 /2 )+0(b-1 /2 )2=C(1 /2 -c )+0(1 /2 -c )2  (B2) 

with C = x(21n2 - 1)/4 = 0.303. Obviously the series (3.32b) and (3.35b) become 
meaningless for A + 0. 'To find a proper substitute we use an extension of the theory 
of slowly "lying functions, invented in another context [%I. 

Let us write 

F ( t )  = ( t / tu )" f (u)  U = In(t/t,). (B3a) 

One finds the asymptotic expansion for the Laplace transform F ( r )  = L T [ f l ( z ) :  

1 
2r(v)(1 + z)f(')(y) - z F ( z )  = (-izto)-" y = In[l/(-iztl)]. (836) 

v=u,1, ... 

Here l'(') denotes the uth derivative of the gamma function. These formulae shall 
be applied for the ,f3 conelator with I = 1/2  

G( t )  = -(t/tU)'/'1(u). (B4) 

The second term in (Bl) is reformulated with I = 1, f = l2 and the third one with 
I = 1/2 , f = 1. The result is an equation for the function I :  

6tu - A1' - 2CU' = O(All' ,  l'l', 1 E " ) .  (B5) 

If the'contribution on the RHS can be neglected compared to the H S  one readily 
solves the differential equation for 1: 

I ( u )  = [ (6to /A)( l  (B6a) 

This yields the desired solution in leading order: 

C ( t )  = -[6t/A]'/'[l - ( t l / t )* / ( ] l / ' .  (B6b) 

There appears a new timescale t A  for the dynamics, specifying the crossover from 
lAu/CI < 1 to lAu/CI > 1: 

t ,  = t l e ( lA.  (B7) 
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One h d s  in particular 

G(t) = - [ 6 t l n ( t / t l ) / ~ ] 1 / z  1, < t < t,. (BS) 

This solution treats the long-time decay for X = s/4. For 1 > la one can expand 
the second factor in (B6b) in order to recognize with (BZ), that the closed formula 
for G(1) is a summation of the series (3.356) and (3.38). 

In order M justify the concept of leading order, one has to determine the leading 
corrections. This is a straight fonvard extension of the discussion of (B.5). Let us 
note the special result for AA = 0 only: 

Here C is 6 independently given by gamma functions. 
In applications to discussions of the p decay on reasonable frequency windows, 

the logarithmic functions or the functions ( f l / t )A/c  appcar as constans that merely 
assure the correct matching. 
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